Global existence of Cauchy problem for Boussinesq paradigm equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

Existence, global nonexistence, and asymptotic behavior of solutions for the Cauchy problem of a multidimensional generalized damped Boussinesq-type equation

where u (x, t) denotes the unknown function, f (s) is the given nonlinear function, u0 (x) and u1 (x) are the given initial value functions, k is a constant, the subscript t indicates the partial derivative with respect to t, n is the dimension of space variable x, and △ denotes the Laplace operator in R. The effects of small nonlinearity and dispersion are taken into consideration in the deriv...

متن کامل

Cauchy Problem for the Sixth-order Damped Multidimensional Boussinesq Equation

In this article, we consider the Cauchy problem for sixth-order damped Boussinesq equation in Rn. The well-posedness of global solutions and blow-up of solutions are obtained. The asymptotic behavior of the solution is established by the multiplier method.

متن کامل

Existence of Global Solution of the Cauchy Problem for the Relativistic Boltzmann Equation with Hard Interactions

By using the DiPerna and Lions techniques for the nonrelativistic Boltzmann equation, it is shown that there exists a global mild solution to the Cauchy problem for the relativistic Boltzmann equation with the assumptions of the relativistic scattering cross section including some relativistic hard interactions and the initial data satifying finite mass, “inertia”, energy and entropy.

متن کامل

Validity of the Weakly-nonlinear Solution of the Cauchy Problem for the Boussinesq–ostrovsky Equation

We consider the initial-value problem for the regularized Boussinesq–Ostrovsky equation in the class of periodic functions. Validity of the weakly-nonlinear solution, given in terms of two counter-propagating waves satisfying the uncoupled Ostrovsky equations, is examined. We prove analytically and illustrate numerically that the improved accuracy of the solution can be achieved at the time sca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2013

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2012.05.024